Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations

نویسندگان

  • Jialin Hong
  • Yajuan Sun
چکیده

In this paper we investigate Donder-Weyl (DW) Hamilton-Jacobi equations and establish the connection between DW Hamilton-Jacobi equations and multi-symplectic Hamiltonian systems. Based on the study of DW Hamilton-Jacobi equations, we present the generating functions for multi-symplectic partitioned Runge-Kutta (PRK) methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Geometric Structure of the Hamilton-Jacobi Equation via Generating Functions of Symplectic Transforms

The geometric structure of the Hamilton-Jacobi equation is analyzed by using symplectic geometry. Generating function of symplectic transform plays an important role. It will be shown that the Hamilton-Jacobi equation possesses important geometric properties such as existence condition and maximality of the stabilizing solution, which are well-known in the Riccati equation.

متن کامل

Symplectic Microgeometry Ii: Generating Functions

We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

Constructing a class of solutions for the Hamilton–Jacobi equation in field theory

A new approach leading to the formulation of the Hamilton–Jacobi equation for field theories is investigated within the framework of jet– bundles and multi–symplectic manifolds. An algorithm associating classes of solutions to given sets of boundary conditions of the field equations is provided. The paper also puts into evidence the intrinsic limits of the Hamilton–Jacobi method as an algorithm...

متن کامل

Nonholonomic Hamilton-Jacobi Theory via Chaplygin Hamiltonization

This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1]. In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2008